Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Adv Wound Care (New Rochelle) ; 13(4): 155-166, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38299969

RESUMO

Objective: Given the significant economic, health care, and personal burden of acute and chronic wounds, we investigated the dose dependent wound healing mechanisms of two Avena sativa derived compounds: avenanthramide (AVN) and ß-Glucan. Approach: We utilized a splinted excisional wound model that mimics human-like wound healing and performed subcutaneous AVN and ß-Glucan injections in 15-week-old C57BL/6 mice. Histologic and immunohistochemical analysis was performed on the explanted scar tissue to assess changes in collagen architecture and cellular responses. Results: AVN and ß-Glucan treatment provided therapeutic benefits at a 1% dose by weight in a phosphate-buffered saline vehicle, including accelerated healing time, beneficial cellular recruitment, and improved tissue architecture of healed scars. One percent AVN treatment promoted an extracellular matrix (ECM) architecture similar to unwounded skin, with shorter, more randomly aligned collagen fibers and reduced inflammatory cell presence in the healed tissue. One percent ß-Glucan treatment promoted a tissue architecture characterized by long, thick bundles of collagen with increased blood vessel density. Innovation: AVN and ß-Glucan have previously shown promise in promoting wound healing, although the therapeutic efficacies and mechanisms of these bioactive compounds remain incompletely understood. Furthermore, the healed ECM architecture of these wounds has not been characterized. Conclusions: AVN and ß-Glucan accelerated wound closure compared to controls through distinct mechanisms. AVN-treated scars displayed a more regenerative tissue architecture with reduced inflammatory cell recruitment, while ß-Glucan demonstrated increased angiogenesis with more highly aligned tissue architecture more indicative of fibrosis. A deeper understanding of the mechanisms driving healing in these two naturally derived therapeutics will be important for translation to human use.


Assuntos
Cicatriz , beta-Glucanas , ortoaminobenzoatos , Animais , Camundongos , beta-Glucanas/farmacologia , Colágeno , Camundongos Endogâmicos C57BL , Cicatrização
2.
Nat Biotechnol ; 42(1): 109-118, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37106037

RESUMO

Molecular mechanisms of organismal and cell aging remain incompletely understood. We, therefore, generated a body-wide map of noncoding RNA (ncRNA) expression in aging (16 organs at ten timepoints from 1 to 27 months) and rejuvenated mice. We found molecular aging trajectories are largely tissue-specific except for eight broadly deregulated microRNAs (miRNAs). Their individual abundance mirrors their presence in circulating plasma and extracellular vesicles (EVs) whereas tissue-specific ncRNAs were less present. For miR-29c-3p, we observe the largest correlation with aging in solid organs, plasma and EVs. In mice rejuvenated by heterochronic parabiosis, miR-29c-3p was the most prominent miRNA restored to similar levels found in young liver. miR-29c-3p targets the extracellular matrix and secretion pathways, known to be implicated in aging. We provide a map of organism-wide expression of ncRNAs with aging and rejuvenation and identify a set of broadly deregulated miRNAs, which may function as systemic regulators of aging via plasma and EVs.


Assuntos
MicroRNAs , Camundongos , Animais , MicroRNAs/metabolismo , Envelhecimento/genética , Fígado/metabolismo , Parabiose
3.
Aesthet Surg J ; 44(2): 165-171, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-37706323

RESUMO

BACKGROUND: The lumbar artery perforator (LAP) flap is a valuable secondary option for autologous breast reconstruction when abdominal donor sites are not available. OBJECTIVES: The aim of this study was to determine how the LAP donor site affects waistline and gluteal proportions, and whether LAP flaps may produce potential secondary benefits concerning donor site aesthetics. METHODS: A retrospective review of 50 patients who underwent bilateral breast reconstruction with LAP flaps (100 flaps) between 2018 and 2022 was performed. Patient characteristics and postoperative complications were recorded. Pre- and postoperative standardized frontal and lateral patient photographs were analyzed to identify postoperative changes in waist-to-hip ratio (WHR) to assess waistline definition and buttock projection. The patients' individual perception of postoperative aesthetic changes to their waistline and buttocks was determined by an electronic survey. RESULTS: The patients had a mean age of 51 years (range, 24-63 years) and a mean BMI of 26.9 kg/m2 (range, 19.3-37.4 kg/m2). Postoperative donor site complications included seroma (n = 10), wound dehiscence (n = 5), hematoma (n = 4), and wound infection (n = 2). Flap loss rate was 2%. After reconstruction, patients were found to have a more defined waistline, indicated by a significantly decreased WHR on frontal images (mean [standard error of the mean], 0.85 [0.05] vs 0.80 [0.05], P < .005) and a more projected buttocks indicated by a significant reduction in WHR on lateral images (0.92 [0.07] vs 0.87 [0.07], P < .0001). Among the patients who responded to the survey, 73% indicated that their waistline had aesthetically improved, 6.7% felt it had not changed, and 20% felt that it had worsened. An aesthetic improvement of the buttocks was reported by 53%, 40% felt their buttocks had not changed, and 6.7% felt their buttocks appearance had worsened. CONCLUSIONS: Bilateral LAP flap breast reconstruction leads to improved waistline definition and buttock projection, bringing patients closer to ideal aesthetic proportions. This reconstructive approach is ideal for patients who are not candidates for abdominal free flaps, but who demonstrate excess flank tissue and seek a more defined waistline and projected buttocks.


Assuntos
Neoplasias da Mama , Mamoplastia , Retalho Perfurante , Humanos , Pessoa de Meia-Idade , Feminino , Retalho Perfurante/irrigação sanguínea , Nádegas/cirurgia , Nádegas/irrigação sanguínea , Mamoplastia/efeitos adversos , Mamoplastia/métodos , Estudos Retrospectivos , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/cirurgia , Artérias , Neoplasias da Mama/cirurgia
4.
J Reconstr Microsurg ; 40(2): 156-162, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37236240

RESUMO

BACKGROUND: The profunda artery perforator (PAP) flap has emerged as an excellent secondary option for autologous breast reconstruction. Despite the increased acceptance, potential secondary benefits concerning aesthetic proportions of proximal thigh and buttock at the donor site have never been systematically investigated. METHODS: A retrospective review of 151 patients who underwent breast reconstruction with horizontally designed PAP flaps (292 flaps) from 2012 to 2020 was performed. Patient characteristics, complications, and numbers of revision surgeries were collected. In bilateral reconstructions, pre- and postoperative standardized patient photographs were analyzed to identify postoperative changes in proximal thigh and buttock contour. The patients' own perception of postoperative aesthetic changes was determined by an electronic survey. RESULTS: The patients had a mean age of 51 and a mean body mass index of 26.3 kg/m2. The most common complications were minor and major wound complications affecting 35.1% of patients, followed by cellulitis (12.6%), seroma (7.9%), and hematoma (4.0%). A total of 38 patients (25.2%) underwent revision of the donor site. After reconstruction, patients were found to have aesthetically improved proximal thigh and buttock proportions, indicated by a wider thigh gap (thigh gap-hip ratio: 0.05 ± 0.04 vs. 0.13 ± 0.05, p < 0.0001) and reduction in lateral thigh-to-buttock ratio (0.85 ± 0.05 vs. 0.76 ± 0.05, p < 0.0001). Among the 85 patients who responded to the survey (56.3% response rate), 70.6% felt that PAP surgery had aesthetically either improved their thigh contour (54.12%) or not changed it (16.47%), whereas only 29.4% reported that the surgery negatively impacted their thigh contour. CONCLUSION: PAP flap breast reconstruction leads to improved aesthetic proportions of the proximal thigh and buttock. This approach is ideal for patients with ptotic tissue of the inferior buttocks and medial thigh, a poorly defined infragluteal fold, and inadequate anterior-posterior buttock projection.


Assuntos
Mamoplastia , Retalho Perfurante , Humanos , Pessoa de Meia-Idade , Coxa da Perna/cirurgia , Coxa da Perna/irrigação sanguínea , Nádegas/cirurgia , Nádegas/irrigação sanguínea , Retalho Perfurante/irrigação sanguínea , Mamoplastia/efeitos adversos , Artérias/cirurgia , Estudos Retrospectivos , Estética
5.
Nat Biomed Eng ; 7(11): 1419-1436, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37749310

RESUMO

Small animals do not replicate the severity of the human foreign-body response (FBR) to implants. Here we show that the FBR can be driven by forces generated at the implant surface that, owing to allometric scaling, increase exponentially with body size. We found that the human FBR is mediated by immune-cell-specific RAC2 mechanotransduction signalling, independently of the chemistry and mechanical properties of the implant, and that a pathological FBR that is human-like at the molecular, cellular and tissue levels can be induced in mice via the application of human-tissue-scale forces through a vibrating silicone implant. FBRs to such elevated extrinsic forces in the mice were also mediated by the activation of Rac2 signalling in a subpopulation of mechanoresponsive myeloid cells, which could be substantially reduced via the pharmacological or genetic inhibition of Rac2. Our findings provide an explanation for the stark differences in FBRs observed in small animals and humans, and have implications for the design and safety of implantable devices.


Assuntos
Reação a Corpo Estranho , Mecanotransdução Celular , Camundongos , Humanos , Animais , Próteses e Implantes , Células Mieloides/patologia , Transdução de Sinais
6.
Nat Commun ; 14(1): 4729, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550295

RESUMO

Chronic wounds impose a significant healthcare burden to a broad patient population. Cell-based therapies, while having shown benefits for the treatment of chronic wounds, have not yet achieved widespread adoption into clinical practice. We developed a CRISPR/Cas9 approach to precisely edit murine dendritic cells to enhance their therapeutic potential for healing chronic wounds. Using single-cell RNA sequencing of tolerogenic dendritic cells, we identified N-myc downregulated gene 2 (Ndrg2), which marks a specific population of dendritic cell progenitors, as a promising target for CRISPR knockout. Ndrg2-knockout alters the transcriptomic profile of dendritic cells and preserves an immature cell state with a strong pro-angiogenic and regenerative capacity. We then incorporated our CRISPR-based cell engineering within a therapeutic hydrogel for in vivo cell delivery and developed an effective translational approach for dendritic cell-based immunotherapy that accelerated healing of full-thickness wounds in both non-diabetic and diabetic mouse models. These findings could open the door to future clinical trials using safe gene editing in dendritic cells for treating various types of chronic wounds.


Assuntos
Sistemas CRISPR-Cas , Traumatismos Craniocerebrais , Humanos , Camundongos , Animais , Cicatrização/genética , Genes myc , Edição de Genes , Células Dendríticas
7.
Plast Reconstr Surg ; 152(1): 239-249, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37382921

RESUMO

SUMMARY: Although robotic surgery has been routinely established in other surgical disciplines, robotic technologies have been less readily adopted in plastic surgery. Despite a strong demand for innovation and cutting-edge technology in plastic surgery, most reconstructive procedures, including microsurgery, have continued to necessitate an open approach. Recent advances in robotics and artificial intelligence, however, are gaining momentum and have shown significant promise to improve patient care in plastic surgery. These next-generation surgical robots have the potential to enable surgeons to perform complex procedures with greater precision, flexibility, and control than previously possible with conventional techniques. Successful integration of robotic technologies into clinical practice in plastic surgery requires achieving key milestones, including implementing appropriate surgical education and garnering patient trust.


Assuntos
Procedimentos de Cirurgia Plástica , Procedimentos Cirúrgicos Robóticos , Robótica , Cirurgia Plástica , Humanos , Inteligência Artificial
8.
bioRxiv ; 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37066136

RESUMO

While past studies have suggested that plasticity exists between dermal fibroblasts and adipocytes, it remains unknown whether fat actively contributes to fibrosis in scarring. We show that adipocytes convert to scar-forming fibroblasts in response to Piezo -mediated mechanosensing to drive wound fibrosis. We establish that mechanics alone are sufficient to drive adipocyte-to- fibroblast conversion. By leveraging clonal-lineage-tracing in combination with scRNA-seq, Visium, and CODEX, we define a "mechanically naïve" fibroblast-subpopulation that represents a transcriptionally intermediate state between adipocytes and scar-fibroblasts. Finally, we show that Piezo1 or Piezo2 -inhibition yields regenerative healing by preventing adipocytes' activation to fibroblasts, in both mouse-wounds and a novel human-xenograft-wound model. Importantly, Piezo1 -inhibition induced wound regeneration even in pre-existing established scars, a finding that suggests a role for adipocyte-to-fibroblast transition in wound remodeling, the least-understood phase of wound healing. Adipocyte-to-fibroblast transition may thus represent a therapeutic target for minimizing fibrosis via Piezo -inhibition in organs where fat contributes to fibrosis.

9.
Plast Reconstr Surg ; 152(4): 751e-758e, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36917745

RESUMO

SUMMARY: Blockchain technology has attracted substantial interest in recent years, most notably for its effect on global economics through the advent of cryptocurrency. Within the health care domain, blockchain technology has been actively explored as a tool for improving personal health data management, medical device security, and clinical trial management. Despite a strong demand for innovation and cutting-edge technology in plastic surgery, integration of blockchain technologies within plastic surgery is in its infancy. Recent advances and mainstream adoption of blockchain are gaining momentum and have shown significant promise for improving patient care and information management. In this article, the authors explain what defines a blockchain and discuss its history and potential applications in plastic surgery. Existing evidence suggests that blockchain can enable patient-centered data management, improve privacy, and provide additional safeguards against human error. Integration of blockchain technology into clinical practice requires further research and development to demonstrate its safety and efficacy for patients and providers.


Assuntos
Blockchain , Humanos , Atenção à Saúde , Privacidade , Gerenciamento de Dados , Segurança Computacional
10.
Front Med (Lausanne) ; 10: 1060758, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36999070

RESUMO

Introduction: According to the American Diabetes Association (ADA), 9-12 million patients suffer from chronic ulceration each year, costing the healthcare system over USD $25 billion annually. There is a significant unmet need for new and efficacious therapies to accelerate closure of non-healing wounds. Nitric Oxide (NO) levels typically increase rapidly after skin injury in the inflammatory phase and gradually diminish as wound healing progresses. The effect of increased NO concentration on promoting re-epithelization and wound closure has yet to be described in the context of diabetic wound healing. Methods: In this study, we investigated the effects of local administration of an NO-releasing gel on excisional wound healing in diabetic mice. The excisional wounds of each mouse received either NO-releasing gel or a control phosphate-buffered saline (PBS)-releasing gel treatment twice daily until complete wound closure. Results: Topical administration of NO-gel significantly accelerated the rate of wound healing as compared with PBS-gel-treated mice during the later stages of healing. The treatment also promoted a more regenerative ECM architecture resulting in shorter, less dense, and more randomly aligned collagen fibers within the healed scars, similar to that of unwounded skin. Wound healing promoting factors fibronectin, TGF-ß1, CD31, and VEGF were significantly elevated in NO vs. PBS-gel-treated wounds. Discussion: The results of this work may have important clinical implications for the management of patients with non-healing wounds.

11.
J Surg Res ; 288: 172-177, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36989833

RESUMO

INTRODUCTION: Microvascular thrombosis with resultant flap loss remains a devastating complication in autologous breast reconstruction. While acetylsalicylic acid (ASA) for prevention of microvascular thrombosis is commonly administered postoperatively, clinical evidence supporting this practice remains insufficient. Here, we investigate the association of postoperative ASA administration with differences in clinical outcomes following microsurgical breast reconstruction. METHODS: A prospectively maintained database was queried to identify patients who had undergone microsurgical breast reconstruction. Patients were categorized based on whether they had received postoperative ASA for 30 d (Group 1) or had not received ASA (Group 2). Patient demographics, reconstructive outcomes, complications, and transfusion requirements were retrieved. RESULTS: One hundred thirty six patients with a mean age of 49.5 y and a mean body mass index of 28.5 kg/m2 who had undergone a total of 216 microsurgical breast reconstructions were included. No significant differences were noted with regard to patient demographics with the exceptions of increased rates of neoadjuvant chemotherapy and delayed reconstruction in Group 1. There were no significant differences in the rates of postoperative complications including breast hematoma, mastectomy skin flap necrosis, partial flap necrosis, seroma, and deep venous thrombosis between patients who did or did not receive ASA postoperatively. Similarly, no difference was noted regarding postoperative blood transfusion rates (Group 1: 9.9% versus Group 2: 9.1%; P = 0.78). Finally, patients in Group 1 had significantly longer hospital stays (Q1 = 4, median = 4.5, Q3 = 5). CONCLUSIONS: Postoperative ASA administration is not associated with improved postoperative clinical outcomes. The use of ASA routinely after autologous breast reconstruction does not appear to be a necessity in practice.


Assuntos
Neoplasias da Mama , Mamoplastia , Trombose , Humanos , Pessoa de Meia-Idade , Feminino , Mastectomia/efeitos adversos , Aspirina/efeitos adversos , Neoplasias da Mama/cirurgia , Neoplasias da Mama/complicações , Mamoplastia/efeitos adversos , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/prevenção & controle , Trombose/complicações , Necrose , Estudos Retrospectivos
12.
Ann Surg ; 278(2): e349-e359, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36111847

RESUMO

OBJECTIVE: Our objective was to identify macrophage subpopulations and gene signatures associated with regenerative or fibrotic healing across different musculoskeletal injury types. BACKGROUND: Subpopulations of macrophages are hypothesized to fine tune the immune response after damage, promoting either normal regenerative, or aberrant fibrotic healing. METHODS: Mouse single-cell RNA sequencing data before and after injury were assembled from models of musculoskeletal injury, including regenerative and fibrotic mouse volumetric muscle loss (VML), regenerative digit tip amputation, and fibrotic heterotopic ossification. R packages Harmony , MacSpectrum , and Seurat were used for data integration, analysis, and visualizations. RESULTS: There was a substantial overlap between macrophages from the regenerative VML (2 mm injury) and regenerative bone models, as well as a separate overlap between the fibrotic VML (3 mm injury) and fibrotic bone (heterotopic ossification) models. We identified 2 fibrotic-like (FL 1 and FL 2) along with 3 regenerative-like (RL 1, RL 2, and RL 3) subpopulations of macrophages, each of which was transcriptionally distinct. We found that regenerative and fibrotic conditions had similar compositions of proinflammatory and anti-inflammatory macrophages, suggesting that macrophage polarization state did not correlate with healing outcomes. Receptor/ligand analysis of macrophage-to-mesenchymal progenitor cell crosstalk showed enhanced transforming growth factor ß in fibrotic conditions and enhanced platelet-derived growth factor signaling in regenerative conditions. CONCLUSION: Characterization of macrophage subtypes could be used to predict fibrotic responses following injury and provide a therapeutic target to tune the healing microenvironment towards more regenerative conditions.


Assuntos
Músculo Esquelético , Ossificação Heterotópica , Camundongos , Animais , Macrófagos , Cicatrização/fisiologia , Fator de Crescimento Derivado de Plaquetas
13.
Bioact Mater ; 19: 167-178, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35510174

RESUMO

Conventional synthetic vascular grafts are associated with significant failure rates due to their mismatched mechanical properties with the native vessel and poor regenerative potential. Though different tissue engineering approaches have been used to improve the biocompatibility of synthetic vascular grafts, it is still crucial to develop a new generation of synthetic grafts that can match the dynamics of native vessel and direct the host response to achieve robust vascular regeneration. The size of pores within implanted biomaterials has shown significant effects on macrophage polarization, which has been further confirmed as necessary for efficient vascular formation and remodeling. Here, we developed biodegradable, autoclavable synthetic vascular grafts from a new polyurethane elastomer and tailored the grafts' interconnected pore sizes to promote macrophage populations with a pro-regenerative phenotype and improve vascular regeneration and patency rate. The synthetic vascular grafts showed similar mechanical properties to native blood vessels, encouraged macrophage populations with varying M2 to M1 phenotypic expression, and maintained patency and vascular regeneration in a one-month rat carotid interposition model and in a four-month rat aortic interposition model. This innovative bioactive synthetic vascular graft holds promise to treat clinical vascular diseases.

14.
STAR Protoc ; 4(1): 101946, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36525348

RESUMO

Despite its rapidly increased availability for the study of complex tissue, single-cell RNA sequencing remains prohibitively expensive for large studies. Here, we present a protocol using oligonucleotide barcoding for the tagging and pooling of multiple samples from healing wounds, which are among the most challenging tissue types for this application. We describe steps to generate skin wounds in mice, followed by tissue harvest and oligonucleotide barcoding. This protocol is also applicable to other species including rats, pigs, and humans. For complete details on the use and execution of this protocol, please refer to Stoeckius et al. (2018),1 Galiano et al. (2004),2 and Mascharak et al. (2022).3.


Assuntos
Oligonucleotídeos , Neoplasias Cutâneas , Humanos , Camundongos , Ratos , Animais , Suínos , Cicatrização/genética , Análise de Sequência de RNA
15.
Nat Biotechnol ; 41(5): 652-662, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36424488

RESUMO

'Smart' bandages based on multimodal wearable devices could enable real-time physiological monitoring and active intervention to promote healing of chronic wounds. However, there has been limited development in incorporation of both sensors and stimulators for the current smart bandage technologies. Additionally, while adhesive electrodes are essential for robust signal transduction, detachment of existing adhesive dressings can lead to secondary damage to delicate wound tissues without switchable adhesion. Here we overcome these issues by developing a flexible bioelectronic system consisting of wirelessly powered, closed-loop sensing and stimulation circuits with skin-interfacing hydrogel electrodes capable of on-demand adhesion and detachment. In mice, we demonstrate that our wound care system can continuously monitor skin impedance and temperature and deliver electrical stimulation in response to the wound environment. Across preclinical wound models, the treatment group healed ~25% more rapidly and with ~50% enhancement in dermal remodeling compared with control. Further, we observed activation of proregenerative genes in monocyte and macrophage cell populations, which may enhance tissue regeneration, neovascularization and dermal recovery.


Assuntos
Bandagens , Dispositivos Eletrônicos Vestíveis , Camundongos , Animais , Cicatrização , Pele , Monitorização Fisiológica
16.
Plast Reconstr Surg Glob Open ; 10(12): e4707, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36530858

RESUMO

The introduction of mesh for reinforcement of ventral hernia repair (VHR) led to a significant reduction in hernia recurrence rates. However, it remains controversial whether synthetic or biologic mesh leads to superior outcomes. Recently, hybrid mesh consisting of reinforced biosynthetic ovine rumen (RBOR) has been developed and aims to combine the advantages of biologic and synthetic mesh; however, outcomes after VHR with RBOR have not yet been compared with the standard of care. Methods: We performed a retrospective analysis on 109 patients, who underwent VHR with RBOR (n = 50) or synthetic polypropylene mesh (n = 59). Demographic characteristics, comorbidities, postoperative complications, and recurrence rates were analyzed and compared between the groups. Multivariate logistic regression models were fit to assess associations of mesh type with overall complications and surgical site occurrence (SSO). Results: Patients who underwent VHR with RBOR were older (mean age 63.7 versus 58.8 years, P = 0.02) and had a higher rate of renal disease (28.0 versus 10.2%, P = 0.01) compared with patients with synthetic mesh. Despite an unfavorable risk profile, patients with RBOR had lower rates of SSO (16.0 versus 30.5%, P = 0.12) and similar hernia recurrence rates (4.0 versus 6.78%, P = 0.68) compared with patients with synthetic mesh. The use of synthetic mesh was significantly associated with higher odds for overall complications (3.78, P < 0.05) and SSO (3.87, P < 0.05). Conclusion: Compared with synthetic polypropylene mesh, the use of RBOR for VHR mitigates SSO while maintaining low hernia recurrence rates at 30-month follow-up.

17.
Cancer Cell ; 40(11): 1392-1406.e7, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36270275

RESUMO

Cancer-associated fibroblasts (CAFs) are integral to the solid tumor microenvironment. CAFs were once thought to be a relatively uniform population of matrix-producing cells, but single-cell RNA sequencing has revealed diverse CAF phenotypes. Here, we further probed CAF heterogeneity with a comprehensive multiomics approach. Using paired, same-cell chromatin accessibility and transcriptome analysis, we provided an integrated analysis of CAF subpopulations over a complex spatial transcriptomic and proteomic landscape to identify three superclusters: steady state-like (SSL), mechanoresponsive (MR), and immunomodulatory (IM) CAFs. These superclusters are recapitulated across multiple tissue types and species. Selective disruption of underlying mechanical force or immune checkpoint inhibition therapy results in shifts in CAF subpopulation distributions and affected tumor growth. As such, the balance among CAF superclusters may have considerable translational implications. Collectively, this research expands our understanding of CAF biology, identifying regulatory pathways in CAF differentiation and elucidating therapeutic targets in a species- and tumor-agnostic manner.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias , Humanos , Fibroblastos Associados a Câncer/patologia , Proteômica , Microambiente Tumoral/genética , Fenótipo , Neoplasias/genética , Neoplasias/patologia
18.
Plast Reconstr Surg Glob Open ; 10(8): e4470, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36032379

RESUMO

Textured breast implants are associated with prolonged inflammation leading to increased risk for complications such as the development of anaplastic large cell lymphoma. The underlying molecular mechanisms that drive increased inflammation toward textured implants (compared with smooth implants) remain poorly understood. Here, we present the first known case of a patient with Ehlers-Danlos syndrome (EDS) who developed two independent fibrotic capsules around a single textured silicone implant. The patient was found to have one internal capsule tightly adherent to the implant and a second external capsule that was attached to the surrounding tissue. We observed that the internal implant-adherent capsule was composed of a highly aligned and dense collagen network, completely atypical for EDS and indicative of a high mechanical stress environment. In contrast, the external nonadherent capsule, which primarily interacted with the smooth surface of the internal capsule, displayed disorganized collagen fibers with no discernible alignment, classic for EDS. Remarkably, we found that the internal capsule displayed high activation of monocyte chemoattractant protein-1, a mechanoresponsive inflammatory mediator that was not elevated in the disorganized external capsule. Taken together, these findings demonstrate that the tight adhesion between the textured implant surface and the internal capsule creates a high mechanical stress environment, which is responsible for the increased local inflammation observed in the internal capsule. This unique case demonstrates that mechanical stress is able to override genetic defects locally in collagen organization and directly connects the textured surface of implants to prolonged inflammation.

19.
Bioessays ; 44(9): e2200047, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35835730

RESUMO

Cells and tissue within injured organs undergo a complicated healing process that still remains poorly understood. Interestingly, smaller organisms respond to injury with tissue regeneration and restoration of function, while humans and other large organisms respond to injury by forming dysfunctional, fibrotic scar tissue. Over the past few decades, allometric scaling principles have been well established to show that larger organisms experience exponentially higher tissue forces during movement and locomotion and throughout the organism's lifespan. How these evolutionary adaptations may affect tissue injury has not been thoroughly investigated in humans. We discuss how these adapations may affect healing and demonstrate that blocking the most evolutionary conserved biologic force sensor enables large organisms to heal after injury with true tissue regeneration. Future strategies to disrupt tissue force sensors may unlock the key to regenerating after injury in a wide range of organ systems.


Assuntos
Evolução Biológica , Cicatrização , Humanos , Locomoção
20.
Sci Transl Med ; 14(645): eabj9152, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35584231

RESUMO

Burns and other traumatic injuries represent a substantial biomedical burden. The current standard of care for deep injuries is autologous split-thickness skin grafting (STSG), which frequently results in contractures, abnormal pigmentation, and loss of biomechanical function. Currently, there are no effective therapies that can prevent fibrosis and contracture after STSG. Here, we have developed a clinically relevant porcine model of STSG and comprehensively characterized porcine cell populations involved in healing with single-cell resolution. We identified an up-regulation of proinflammatory and mechanotransduction signaling pathways in standard STSGs. Blocking mechanotransduction with a small-molecule focal adhesion kinase (FAK) inhibitor promoted healing, reduced contracture, mitigated scar formation, restored collagen architecture, and ultimately improved graft biomechanical properties. Acute mechanotransduction blockade up-regulated myeloid CXCL10-mediated anti-inflammation with decreased CXCL14-mediated myeloid and fibroblast recruitment. At later time points, mechanical signaling shifted fibroblasts toward profibrotic differentiation fates, and disruption of mechanotransduction modulated mesenchymal fibroblast differentiation states to block those responses, instead driving fibroblasts toward proregenerative, adipogenic states similar to unwounded skin. We then confirmed these two diverging fibroblast transcriptional trajectories in human skin, human scar, and a three-dimensional organotypic model of human skin. Together, pharmacological blockade of mechanotransduction markedly improved large animal healing after STSG by promoting both early, anti-inflammatory and late, regenerative transcriptional programs, resulting in healed tissue similar to unwounded skin. FAK inhibition could therefore supplement the current standard of care for traumatic and burn injuries.


Assuntos
Queimaduras , Contratura , Animais , Queimaduras/patologia , Cicatriz/patologia , Contratura/patologia , Mecanotransdução Celular , Pele/patologia , Transplante de Pele/métodos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...